## Exercise 22

Solve the initial-value problem.

$$
4 y^{\prime \prime}-20 y^{\prime}+25 y=0, \quad y(0)=2, \quad y^{\prime}(0)=-3
$$

## Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
4\left(r^{2} e^{r x}\right)-20\left(r e^{r x}\right)+25\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
4 r^{2}-20 r+25=0
$$

Solve for $r$.

$$
\begin{gathered}
(2 r-5)^{2}=0 \\
r=\left\{\frac{5}{2}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{5 x / 2}$ and $x e^{5 x / 2}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{5 x / 2}+C_{2} x e^{5 x / 2} .
$$

Differentiate the general solution.

$$
y^{\prime}(x)=\frac{5}{2} C_{1} e^{5 x / 2}+C_{2} e^{5 x / 2}+\frac{5}{2} C_{2} x e^{5 x / 2}
$$

Apply the initial conditions to determine $C_{1}$ and $C_{2}$.

$$
\begin{aligned}
y(0) & =C_{1}=2 \\
y^{\prime}(0) & =\frac{5}{2} C_{1}+C_{2}=-3
\end{aligned}
$$

Solving this system of equations yields $C_{1}=2$ and $C_{2}=-8$. Therefore, the solution to the initial value problem is

$$
y(x)=2 e^{5 x / 2}-8 x e^{5 x / 2} .
$$

Below is a graph of $y(x)$ versus $x$.


